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Abstact
% __ An independent set in a graph is a subset of vertices with the property that no two

of the vertices are joined by an edge, and a maximum independent set in a graph is anindependent set of the largest possible size. A graph is called well-covered if every
independent set that is maximal with respect to set inclusion is also a maximum independent
set. If G is a well-covered graph and G - v is also well-covered for all vertices v in G,
then we say G is 1-well-covered. By making use of a characterization of cubic well-
covered graphs, it is straightforward to determination all cubic 1-well-covered graphs.
Since there is no known characterization of k-regular well-covered graphs for k >4, it is
more difficult to determine the k-regular 1-well-covered graphs for k k 4. The main result
in this regard is the determination of all 3-connected 4-regular planar 1-well-covered
graphs.
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A set of points in a graph is independent if no two points in the graph are joined by
a line. The maximum size possible for a set of independent points in a graph G is called the
independence number of G and is denoted by WC1.. A set of independent points which
attains the maximum size is referred to as a maximum independent set. A set S of
independent points in a graph is ma-ximal (with respect to set inclusion) if the addition to S
of any other point in the graph destroys the independence. In general, a maximal
independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [12] introduced the notion of considering graphs in
which every maximal independent set is also maximum; he called a graph having this
property a well-covered graph. Equivalently, a well-covered graph is one in which every
independent set can be extended to a maximum independent set. Sankaranarayana and
Stewart [15] and, independently, Chvdtal and Slater [3], have shown that determining ifa
given graph G is not well-covered is an NP-complete problem. Hence, determining if a
graph is well-covered is in the class of problems referred to as co-NP-complete. What is
not known is whether or not well-covered is an NP-complete property.

The work on well-covered graphs that has appeared in the literature has focused on
certain subclasses of well-covered graphs. The subclasses covered include cubic well-
covered graphs ([1], [2] and [14]), well-covered graphs whose independence number is
exactly one-half the size of the graph ([16], [4], [5]), well-covered graphs with girth at
least five [6], well-covered graphs without 4-cycles and 5-cycles [7], and products of well-
covered graphs [18].

Staples ([16] and [17]) introduced two subclasses of well-covered graphs which
she called 1-well-covered and W2. A well-covered graph is 1-well-covered if and only if
the deletion of any point from the graph leaves a graph which is also well-covered. A well-
covered graph G is in the class W2 if and only if any two disjoint independent sets in G
can be extended to two disjoint maximum independent sets. Some other results for graphs
in W2 were obtained in [11].

In this paper, we primarily consider 1-well-covered planar regular graphs.
Campbell characterized the cubic planar well-covered graphs in [1]; however, the technique
he employed becomes very cumbersome when applied to planar 4-regular or 5-regular
well-covered graphs. For this reason, we focus on the one-well-covered graphs. The
primary result is stated in Theorem 13.

Preliminarv Results

Staples [ 16] proved an equivalency between two seemingly different subclasses of
well-covered graphs, which we state as the following theorem.

Theorerm 1. Suppose G is well-covered. Then G is 1-well-covered if and only if GE W2.

Since we will appeal mostly to the notion of extending two disjoint independent sets
to disjoint maximum independent sets, henceforth we use the W2 nomenclature instead of
referring to 1-well-covered graphs.

Consider a graph G which is not complete and point v in G. By deleting v and its
neighbors, we obtain a subgraph of G. Specifically, we define the subgraph G, = G-N[v].
Campbell [1] proved the following very useful necessary condition for a graph to be well-
covered.

Theorem 2. If a graph G is well-covered and is not complete, then G, is well-covered for
all v in G. Moreover, a(Gv) = o(G) - 1.
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We prove in Theorem 3 that we have a similar necessary condition for a well-
covered graph to be in W2.

Theorem 3. If a graph G is in W2 and G is not complete, then G. is in W2 for all v in G.
Prof. Let v be a point in G. Since G is not complete, then G, * 0. By Theorem

2, graph G. is well-covered and a(G,) = a(G) - 1. Suppose I, and 12 are disjoint

independent sets in G,. Then II u (v) is an independent set in G, as is 12u (v). Since G

is in W2, there exists maximum independent set J1 2 I1 u (v) such that J1 r 12 = 0. Since
12 u {v) and J 1-v are disjoint independent sets in G, then there exists maximum
independent set J2 ; 12 u (v) such that J2 n (JI-v) = 0. Hence, J2-v and JI-v are disjoint

independent sets in G,. Since IJil = a(G), then LJi-vI = a(G) - 1, for i = 1, 2. Thus, J1-v
contains II, J2-v contains 12, and J1-v and Jrv are disjoint maximum independent sets in
Gv. So any two disjoint independent sets in G, can be extended to disjoint maximum
independent sets in G,. By definition of the class W2, we conclude that GF W2. a

The next lemma will play a significant role for us. We will use it to eliminate many
graphs from consideration as possible W2 graphs.

Lemma 4. Suppose G contains an independent set S and point vt S such that (i) S u (v)
is independent, and (ii) if ye N(v), then y - x for some xe S (that is, S dominates N(v)).
Then G is not in W2.

Proof. If G is not well-covered, then G is not in W2 . If G is well-covered, then
from conditions (i) and (ii), we have that S r N(v) = 0 and S dominates N(v). Thus, S
and [v) are disjoint independent sets in G which don't extend to disjoint maximum
independent sets in G. Therefore, G is not in W2. 0

For graphs drawn in the plane, we say two f=e are adicnt if they share a line. If
a face F contains point v, we say F is incident to v. The size of a face is the number of
points it contains. We refer to the order and sizes of the faces incident to a point v as the
face configuration at v. To reduce the number of face configurations considered, we will
use the theory of Euler contributions. Lebesgue (8] developed the theory of Euler
contributions for planar graphs and Ore [9] and Ore and Plummer (10] used the theory to
study plane graph colorings. The Euler contribution of a point v, J Uv is defined as the
quantity O(v) = I - (1/2)deg(v) + 1(1/xi), where the sum is taken over all faces Fi incident
to v and xi is the size of Fi. If IF(G)I denotes the number of faces in the plane graph G,
then itfollows that I )(v) = IV(G)I - IE(G)I + IF(G)I. Here the sum is taken over all points
v in G. Since Euler's formula for plane graphs says IV(G)I - IE(G)I + IF(G)I = 2, then we
have T, O(v) = 2. Thus, O(v) must be positive for some v in G. If 4(v) > 0, we say v is a
point with positive Euler contribution.

Cubic W2 Graphs

Consider the three graph fragments given in Figure 1. Note that fragments A and B 1
each have four semi-lines and fragment C has two semi-lines.
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Figure 1

Let W be the family of cubic graphs obtained from fragments A, B and C by
placing any number of the fragments in a cycle or path configuration and then joining the
left-hand semi-lines of one fragment to the right-hand semi-lines of the fragment on its left.
Since crossing the lines joining one fragment to another gives a graph which is isomorphic
to the graph obtained without crossing the lines, then we can assume the lines do not cross.

Building on the work of Campbell [1], Royle and Ellingham [14] proved that, with
a few small exceptions, all cubic well-covered graphs belong to W. We state their result in
Theorem 5.

Theorem 5: All cubic well-covered graphs, except for the 6 graphs in Figure 2, belong to
IV. Moreover, all graphs in W are well-covered.

Figure 2

Using the characterization of cubic well-covered graphs given in Theorem 5, in the
next theorem we determine all of the cubic W2 graphs.

Theorem 6. The only cubic W2 graphs are K4 and the triangular prism.
Iqof. Of the 6 exceptional cubic graphs given in Figure 2, only K4 is a W2 graph.

For each of the other five graphs, it is straightforward to find two disjoint independent sets
which don't extend to disjoint maximum independent sets in G. We omit the details.

Suppose G is a graph in the family W. Then G is obtained by connecting
fragments A, B and C in paths or cycles.
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Case 1. Suppose G contains fragment A. If a, - a5 and a3 - 2, then G is the
triangular prism. It is easily verified that the triangular prism is a W2 graph.

Suppose IV(G)I > 6. Without loss of generality, let x - as and y - a6, where x and
y are not in the original A fragment. Then x - y and {y,a2) is independent. Thus, {y,a 2}
and (as) don't extend to disjoint maximum independent sets in G. So Ge W2.

Case 2. Suppose G contains fragment B. If b, - b4 and b5 - bs, then (b3,bs) and

f bi) don't extend to disjoint maximum independent sets in G. So Ge W2.
Suppose IV(G)I > 8. Without loss of generality, let x - b4 and y - b5, where x and

y are not in the original B fragment. Then x - y and (y,b2) is independent. Thus, (y,b2)
and (b4) don't extend to disjoint maximum independent sets in G. So GeW 2.

Case 3. Suppose G contains fragment C. Then IV(G)t > 6. Let x - c1 and y -
such that x and y are not in the original C fragment. Then x - y and {yc3) is independent.
Thus, {y,c3) and (cl) don't extend to disjoint maximum independent sets in G. So
Ge W2.

Therefore, K4 and the triangular prism are the only cubic W2 graphs. 0

4-reaular Planar W2 Graphs

We now turn our attention to 4-regular W2 graphs. Since no characterization of 4-
regular well-covered graphs is known (unlike the situation for cubic well-covered graphs),
we focus most of our efforts on only the planar 3-connected 4-regular W2 graphs. But first
we show in Theorem 7 that no 4-regular W2 graph has a cutpoint.

Theorem 7. Suppose G is 4-regular and in W2. Then G is 2-connected.
B[Qgf. Assume to the contrary that G has a cutpoint v. Since G is 4-regular, then

G-v must have exactly two components, say G1 and G2, each containing two neighbors of
v. Let N(v) n Gi = (al,bl) and N(v) r) G2 = (a2,b2). Define A1, A2, B, and B2 as
follows: Ai = (N(ai) n Gi ) - (bi), Bi = (N(bo) r Gi ) - (ai), for i = 1, 2. Let yleBl.

Case 1. Suppose there exist points ure A1, yle B1, u2eA 2 and y2eB 2 such that
ut is not adjacent to Yl (possibly ul = yl) and u2 is not adjacent to y2 (possibly u2 = y2).
Then (ul,u 2,yl,Y2} is independent and so (Ul ,U2,Yly 2) and [v) don't extend to disjoint
maximum independent sets in G, a contradiction since G is in W2.

Case 2. So either every ureA 1 is adjacent to every yie B1, or every u2eA 2 is

adjacent to every y2e B2. Without loss of generality, assume every ule A, is adjacent to

every yle Bl. Let ze A1. Note that z is not adjacent to bl. Thus, (u1,a2) and (bl) are
disjoint independent sets in G which don't extend to disjoint maximum independent sets in
G, a contradiction since G is in W2.

-Therefore, G cannot have a cutpoint. [0

The following four lemmas will be helpful in determining the 3-connected 4-regular
planar W2 graphs.

Lemma 8. Suppose G is 3-connected 4-regular and planar. Suppose v is a point in G with
face configuration (3,3,x,y), x, y 2! 3, where two triangles incident to v share a line. If
two triangles at v are ulu2v and u2u3v, then ul is not adjacent to u3.

Prof. Assume to the contrary that ul - U3. Let u4 be the fourth neighbor of v (see
Figure 3). If ul has its fourth neighbor on one side of triangle u1 u3v and u3 has its fourth
neighbor on the other side of triangle ulu3v, then either (v,ul) or (v,u3) is a cutset of G.
This contradicts the 3-connected assumption. Thus, ul and u3 each have their fourth
neighbor on the same side of triangle u1 u3v, and so either v or u2 is a cutpoint for G. This
again contradicts the 3-connected assumption. 0
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Figure 3

The next three lemmas are fairly obvious; hence, we omit proofs. Lemma 11 says
that two faces in a 3-connected planar graph which are incident to the same point either
have only that point in common or they are adjacent faces at the point and share only a line.

Lemma 9. Suppose G is 3-connected 4-regular and planar. Suppose F4 = vu4...ut is an
n-face at v, n _> 3, and F 1 = vuIu2 is a triangular face atv such that F4 and F, share the line

vul. If xe F4 such that xe (v,ul), then x is not adjacent to u2.

Lemma 10. Suppose G is 3-connected and planar. Suppose x and y are non-consecutive
points on a face of G. Then x is not adjacent to y.

Lemma 11. Suppose G is planar and 3-connected. Suppose v is a point of G with incident
faces F1, F2, ... , F,.
(i) If Fi and Fj share a line xv (i * j), then Fi rn Fj = xv.
(ii) If Fi and Fj do not share a line of the form xv, for any xe N(v), then Fi r" Fj = (v).

In the following lemmas, we will repeatedly use Lemma 4. In particular, if S and v
are an independent set and point, respectively, which satisfy the hypotheses of Lemma 4,
we will say that S and (v) don't extend to disjoint maximum independent sets in G. If G
is assumed to be a W2 graph, then we will have a contradiction.

For the next lemma only, we don't require G to be planar.

Lemma12,J1. Suppose G is 3-connected 4-regular and in W2 . If G has a 4-wheel
configuration at a point, then G is K5.

Proof. Assume v is a point in G with N(v) = (u1,u2,u3,u4), and triangles uIu 2v,
u2u3v, u3u4v and u4urv forming a 4-wheel configuration at v.

Suppose u1 - u3. If u2 is not adjacent to u4, then (u2,u4) is a cutset for G. So u2 -
u4. It follows that G is K5.

Suppose ul is not adjacent to u3. Let x be the fourth neighbor of u3. If x - ul,
then (ul) and 1u3) don't extend to disjoint maximum independent sets in G. So x is not
adjacent to ul.

Suppose x - u2 and x - u4. Then (x,ul) is a cutset forG since x is not adjacent to
ul. So we can assume either x is not adjacent to u2 or x is not adjacent to u4. Without loss
of generality, assume x is not adjacent to U2. Since G is 4-regular, there is a point y such
that y - x and y is not adjacent to ul. Then (y,ul) and (u3) don't extend to disjoint
maximum independent sets in G.

Hence, ul must be adjacent to u3, and so G must be Ks. 0
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We will attack the problem of finding all 3-connected 4-regular planar w 2 graphs
using the theory of Euler contributions. In each of the next ten lemmas, we consider a
particular face configuration at a point v. Afterwards, the result which we pursue will
follow easily. We will implicity use Lemma 11 in each of these ten lemmas.

Lemma 12.2. Suppose G is 3-connected 4-regular planar and in W2. If G has a point v
with face configuration (3,3,3,4), then G is the graph given in Figure 4.

Figure 4

Prof. Suppose v has face configuration (3,3,3,4) with N(v) = (uu2,u3,u4) and
the 4-face at v is ul vu4x (see Figure 5).

U 1  U2x •u

4 C

Figure 5

From Lemma 8, lis not adjacent to a3 and u is not adjacent to u4. From Lemma
9, x is not adjacent to u2 and x is not adjacent to uM1 From Lemma 10, U1 andUare not

Let z be the fourth neighbor of u2. From above, zO (x,u4}. Let (w) = N(u4) -
(X,v,u3).Case 1. Suppose z - u4. Since x is adjacent to neither u2 nor u3, then there exists a
point s - x such that s # z. Then (s,u2) is independent and so {s,u2) and [u4) do not
extend to disjoint maximum independent sets in G, a contradiction. Thus zi jacen
to4.

Case 2. Suppose z - U3.
Case 2.1. If x and z are not adjacent, then [x,z) and (v) do not extend to disjoint

maximum independent sets in G. So x - z.
Case 2.2. If z - ut, then (x,u4} is a cutset for G. So z and ul are not adjacent.

Let m - ul such that me (x,v,u2). Since G is planar, m and w are not adjacent (see Figure
6). If z - m, then (x,u4) is a cutset. So z and m are not adjacent. If z - w, then (x,w) is
a cutset. So z and w are not adjacent. But then (z,w,m) is independent and so (z,w,m)
and (v) don't extend to disjoint maximum independent sets in G, a contradiction.
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z

x
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Thus, z ndiu•.are not adjacent.
Case 3. Suppose x - z.
Case 3.1. Suppose z and u1 are not adjacent. Let ye ( N(u1) - {x,v,u2} ), and let

Y =N(y)- u1 .
Case 3.1.1. Suppose there exists pre Y such that p is not adjacent to z. Then

(p,z,u4} is independent and so {p,z,u4} and {ul) don't extend to disjoint maximum
independent sets in G.

Case 3.1.2. Thus, peY implies p-z. Ify-z, then {z,u 3) and (u1) don't
extend to disjoint maximum independent sets in G. So y and z are not adjacent. But then
(z,v) and (y) don't extend to disjoint maximum independent sets in G.

Thus, x -- z implies z - u1. See Figure 7.

z

U1 .u 2

V

U 4 113

w

Figure 7

Case 3.2. Suppose w and u3 are not adjacent. Let y - u3, y• (v,u2,u.). From

above, yE (x,z).Case 3.2.1. If y -- w, then (w,ut) and [u3) don't extend to disjoint maximum
independent sets in G. So y and w are not adjacent.

Case 3.1..2. Suppose z .y. Let (a,b} - N(y)-(z, u3 . If w - a and w J b, dhen
{w,u2) and (y) don't extend to disjoint maximum independent sets in G. So, without loss

of generality, assume w is not adjacent to a. If a = x (that is, x -- y), then (y,u4J is a
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cutset. So a * x and (w,aul) is independent. But then (w,a,ul) and (u3) don't extend
to disjoint maximum independent sets in G.

Hence, z and y are not adjacent.
Case 3.2.3. Suppose z - w. Then (W,u3) is a cutset. So z and w are not

adjacent.
Hence, (z,w,y) is independent and so (z,w,y) and (v} don't extend to disjoint

maximum independent sets in G.
Thus, x - z implies w - uM.
Case 3.3. If z and w are not adjacent, then (w,z) and (v) don't extend to disjoint

maximum independent sets in G. So z - w.
Thus, x - z implies z - w.
Case 3.4. If x and w are not adjacent, then {x,w) is a cutset. So x - w.
Thus, x - z implies x - w. See Figure 8.

xz

Figure 8

Consequently, if x - z then G must be the graph given in Figure 4.
Now, recall from earlier that the following sets are independent. {x,u2), (x,u3),

(z,u3), {z,u4), (u2,u4), (ul,u3), {u1,u4). Thus there exists y - u3 such that
ye {x,z,v,u 1,u2,u4). Since z and u4 are not adjacent, it follows by symmetry that y and ul
are not adjacent.

Case 4. If x - y, then by symmetry and the argument given in Case 3 for x - z, the
only W2 graph which can result is the graph obtained in Case 3.

Case 5. So we assume x is not adjacent to z and y is not adjacent to x.
If y and z are not adjacent, then (x,y,z) is independent and so (x,y,z) and (vi

don't extend to disjoint maximum independent sets in G. So y - z.
- Suppose y - u4. Since y is not adjacent to ul, then there exists w - y such that

we (x,z,v,Ul,U2,U3,u4). If w - x, then (w,u2) and (u4) don't extend to disjoint
maximum independent sets in G. So w and x are not adjacent.

Since G is 4-regular, there exist points s and t such that s and t are neighbors of x
and (s,t) r) (v,y,z,ulu2,u3,u4) = 0. Suppose w and s are not adjacent. Then (w,s,u 2)
and (u4) don't extend to disjoint maximum independent sets in G. So w - s and,
similarly, w - t (see Figure 9). But then (v,w) and (x) don't extend to disjoint maximum
independent sets in G.
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z

w y
Figure 9

Hence, y and U4 are not adjacent. By symmetry, z and ul are not adjacent. Thus

there exists m - ut such that me (x,y,zv,ulu2,u3,u4). If m - u4, then (z,uu4} and (ul)
don't extend to disjoint maximum independent sets in G. So m and u4 are not adjacent.

Suppose m - y. Then there exists a point n - u4 such that (n,z,ul) is independent,
where ne (x,vu3). But then (n,z,ul) and (U3) don't extend to disjoint maximum
independent sets in G. So mn and y are not adjacent (see Figure 10).

xz

I u

ul 2

X

y
Figure 10

From above, we see that (m,y,u4) is independent. Then (m,y,u4 ) and (u2) don't
extend to disjoint maximum independent sets in G.

Therefore, the graph shown in Figure 2.5 is the only 3-connected 4-regular planar
W2 graph with the (3,3,3,4) face configuration. o

L.emma12.3. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,3,5).

Eoof. Assume to the contrary that v has face configuration (3,3,3,5). Let N(v) =
(ul,u2,u3,u4) and the 5-face at v be abu4vul. From Lemma 8, .u is not adjacent to Iu- and
u2, is not adjacent to uL. From Lemma 9, a is not adjacent to uz, a is not adjacent to u, Uis
not adjacent to ua, and b is not adjacent to u-i. From Lemma 10, a is not adjacent to u4, .u
is not adjacent to uA, and b is not adjacent to.
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Thus, there exists x - u4 such that xEf Ia,bv,uu 2 ,u3 ). By symmetry, there exists

y - u1 such that ye (a,b,v,u 2,u3,u4 ) (we do not exclude the possibility that y = x).
Case 1. Suppose a - x. Then (a,u2 ) and (u14) don't extend to disjoint maximum

independent sets in G. So a is not adjacent to x. By symmetry, y is not adJacent to b.
Let (p) = N(u2) - (V,Ul,U 3 ).
Case 2. If p = x (that is, x - u2) or p - a, then Ia,u4 )and (112) don't extend to

disjoint maximum independent sets in G. So RtA and p and a are not adjacent.
Case 3. Suppose p - x.
Case 3.1. Suppose p - u3. If x-ul, then (p,t,ul) and (u4) don't extend to

disjoint maximum independent sets in G, where t - b such that te (a,u4}. So x is not
adjacent to ul. Thus {x,ulJ and [u3) don't extend to disjoint maximum independent sets
inG.

Hence, p is not adjacent to u3.
Case 3.2. Suppose x - u3.
Case 3.2.1. If x - b or x - ul, then (b,ul) and (113) don't extend to disjoint

maximum independent sets in G. So x is adjacent to neither b nor ul.

Thus, there exists z - x such that zev Ia,b,ulU 3,u4,p).
Case 3.2.2. If z is not adjacent to a, then {a,z,u2) is independent and so (a,z,u2)

and [u4) don't extend to disjoint maximum independent sets in G. So z - a.
Case 3.2.3. If z - b, then [z,u2) and Nu4) don't extend to disjoint maximum

independent sets in G. So z is not adjacent to b.
Case 3.2.4. If z is not adjacent to ul, then {b,z,ul) is independent and so (b,zul)

and Nu31 don't extend to disjoint maximum independent sets in G. So z - Ul. But then
(p,z} is a cutset for G.

Thus, x is not adjacent to u3. So there exists w - U3 and m - w such that
wE (V,U 2 ,U4) and (w,m) n (p,x) = 0 (see Figure 11). But then (b,muy) is
independent and so [b,m,u1) and [u3} don't extend to disjoint maximum independent sets
in G.

P

a 2

x
Figure 11

Hence, p is not adjacent to x. Thus (p,x,a} is independent. By symmetry, there
exists q - u3 such that qet (v,u2,u4,a,y} and g is not adjacent to y.

If" any member of {p,x,a) is adjacent to u3, then {p,x,a} and (v) don't extend to
disjoint maximum independent sets in G. So qe {a,p,x).

Suppose x - ut (that is, x = y). Then {p,t,u4) and (u11) don't extend to disjoint
•maximum independent sets in G, where t ~ a such that tet [b,u1 }. Thus, x is not adjacent
to u1; hence, x . See Figure 12.
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y P

b
u1 u3

x q
Figure 12

Suppose p - q. Then {q,y,u4) and {u2) don't extend to disjoint maximum
independent sets in G. So p and q are not adjacent Suppose q - x. Then (x,ul) and
{u3) don't extend to disjoint maximum independent sets in G. So Q is not adjacent to x
and, by symmetry, p is not adjacent to y. If q - a, then (x,y,p,q) is an independent set.
Thus, (x,y,p,q) and (v) don't extend to disjoint maximum independent sets in G. So "j
not adjacent to a, and it follows that (a,x,p,q) is independent. But then (a,x,p,q) and (v)
don't extend to disjoint maximum independent sets in G.

Therefore, the face configuration (3,3,3,5) cannot occur. 0

Lemma 12.4. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,3,n), n 2 6.

Roof. Assume to the contrary that v has face configuration (3,3,3,n), n >_ 6. Let
N(v) (u1 ,u2,u3 ,1u4), and let the n-face at v be u3cb2... bau.vy. From Lemma 8, u1.-il
not adjacent to u. and u2 is not adjacent to uA. From Lemma 9, a is not adjacent to u1 , u,
and b are not adjacent, c is not adjacent to u1, ai not adacent to u , b is not adjacent to
1qc is not adjacent to u2, and ui. and are not ad acent. From Lemma 10, a is not
adjacent to c, a is not adjacent to u, and c inotda t to Md.

Now let s - u2 such that si (v,u1,u3).
Case 1. Suppose s - c. Then (c,u4) and (u2) don't extend to disjoint maximum

independent sets in G. Thus, s is not adjacent to c.
Case 2. Suppose s - a.
Case 2.1. If s - u4, then (c,u4) and [U2) don't extend to disjoint maximum

independent sets in G. So s is not adjacent to u4.
- Let w - u4 such that wo {a,v,ul).

Case 2.2. If w - a, w - s and w - ul, then (a,u3) and (ul) don't extend to
disjoint maximum independent sets in G. Thus there exists t - w such that ti (a,s,ul,u4).
But then (b,t,u2) and (u4) don't extend to disjoint maximum independent sets in G.

Hence, s is not adjacent to a.
Case 3. If s - ui, then (a,s,c) and (v) don't extend to disjoint maximum

independent sets in G. So s and UI are not adacent.
Let t - ul, where te {v,u 2,u4); by symmetry with s, tis adjacent to neither a nor c.
Case 4. Suppose s - t.
Case 4.1. Suppose s - U3.
Case 4.1.1. Suppose t - u4. Let (w) = N(t) - {s,u,u 4). If a - w, then f, u2)

and (t) don't extend to disjoint maximum independent sets in G. So a is not adjacent to w.
Let N(a) - (b,u4) = (Y1,Y2). If w - b, w - YI and w - Y2, then (w,v) and (a)

don't extend to disjoint maximum independent sets in G. Thus there exists some x - a, x *
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u4, such that x is not adjacent to w (see Figure 13). But then (x,wu2) is independent and
so (x,w,u2) and {u4) don't extend to disjoint maximum independent sets in G.

"t S

Figure 13

Case 4.1.2. So t is not adjacent to U4. Then {t,u4 ,c) and (u2) don't extend to
disjoint maximum independent sets in G.

Case 4.2. Hence, s is not adjacent to U3. It follows that {a~s,u3) is independent.
Hence, { a,s,u3)} and (Ul } don't extend to disjoint maximum independent sets in 0.

Thus, s is not adjacent to t. Then {s,t,a,c) is independent and (s,t,a,c) and (v}
don't extend to disjoint maximum independent sets in 0.

Therefore, the face configuration (3,3,3,n), n >Ž6, cannot occur. I]

Lemma 12.5. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,4,4).

Prof. Assume to the contrary that v has face configuration (3,3,4,4). Let N(v) =
(Ul,U2,U3,U4})•

Case 1. Suppose the cyclic order of the faces at v is (3,4,3,4), with faces ulu2v,
u2 bu3v, U3U4V and u4aulv. By Lemma 9, a is not adjacent to u',, a is not adjacent to u!, k
is not adjacent to u1, and b is not adtiacent to u2

If a is not adjacent to b, thaen (a,b} and (v) don't extend to disjoint maximum
independent sets in G. So •z..1k. Thus there exists x- Yl,, • iz._..uaand • such
that {x,y,s,t} n {a,b,v,u1 ,u2,u3,u4) = 0.

If x = y and s = t, then tx,s) and Iv) don't extend to disjoint maximum
independent sets in G. So either x * y or s * t. Without loss of generality, assume xL ..
Suppose x - y. Then (y,u4) and (ul)} don't extend to disjoint maximum independent sets
in G..So x is not adjacent to y.

If s -t, then (s,x,y} and (v) don't extend to disjoint maximum independent sets in
G. So s~t. Since s * t and by symmetry with x and y, it follows that s is not adjacent to
!. But then (s,t,x,y) is independent since 0 is planar, and so (s,t~xy} and Iv} don'textend to disjoint maximum independent sets in 1 (see Figure 14).
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a

Figure 14

Thus the cyclic face order (3,4,3,4) cannot occur.
Case 2. Suppose the cyclic face order is (3,3,4,4), with faces u1u2v, u2u3v,

u3bu4v and u4 aulv. By Lemma 8, int adjacent to U. By Lemma 9, a..izs DD ajacent
I.2, b is not adjacent to u2, and u_.is not adjacent Lo M4. -By Lemma 10, inac
1Q.U4 and u3 is not adjacent to MI.

Case 2.1. Suppose a - b. Then there exists z - u4 and w - z such that (w,z) r)

(a,b) = 0. Since G is planar, {ul,u3,w) is independent; hence, (U1,U3,w) and (u4)
don't extend to disjoint maximum independent sets in G. Thus, a is not adjacent to b.

Let X - such that ye (v,u 1,u3).
Case 2.2. Suppose y - a.
Case 2.2.1. Suppose y - ul (see Figure 15).

y

a

U U3

b

Figure 15

Thus, either we have a (3,3,3,4) face configuration at ul, or there is a point inside
triangle yaul or inside triangle yu2ul. From Lemma 12.2, point ul cannot have a (3,3,3,4)
face configuration. If there is a point inside triangle yaul, then |y,a) is a cutset,
contradicting 3-connectedness. If there is a point inside triangle yuju2, then y is a cutpoint,
contradicting 3-connectedness.

Case 2.2.2. Hence, y and ul are not adjacent (we are still assuming that y - a).
Since y is not adjacent to ul, there exists z - ul such that ze (a,b,v,y,u 1,u2,u3,u4), and w

- z such that we (a,y). Then (w,u3,u 4) is independent and so (w,u3,u 4) and (ul) don't
extend to disjoint maximum independent sets in G.
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Hence, y is not adjacent to a and, by symmetry, y is not adjacent to b. It follows
that (a,b,y} is independent and so (a,b,yl and Jv) don't extend to disjoint maximum
independent sets in G.

Thus, the cyclic face order (3,3,4,4) cannot occur. From Cases 1 and 2, we
conclude that the face configuration (3,3,4,4) cannot occur. 0

Lgmia12.6. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,4,5).

Eof. Assume to the contrary that v has face configuration (3,3,4,5). Let N(v) =
(ul,u2,u3,u4).

Case 1. Suppose the cyclic order of the faces at v is (3,3,4,5), with faces ulu2v,
u2u3v, u3cu4V and u4 baulv. By Lemma 8, .1 not adjacent to ul. By Lemma 9, Rzil

a u2 is not adjacent to a, u2 is not adjuacent to b. and u2 is not adjacent to c.
By Lemma 10, uI is not adjacent to u4, u is-not adjacent to U4, and a is not adjacent to 24.

Case 1.1. Suppose a - c.
Case 1.1.1. Suppose c - u1. Then (u2,u 3 ) is a cutset forG. So c is not adjacent

to Ul.

Thus, there exists x - ul such that xe [a,b,c,v,u 2,u3 ,u4).
Case 1.1.2. If x - u3, then (x,u 2 ) is a cutset for G. So x is not adjacent to u3.

Case 1.1.3. Suppose c - x. Let m - U3 such that mO (v,c,u2). Then [b,m,ul)
and (c) don't extend to disjoint maximum independent sets in G. So c is not adjacent to x.

Case 1.1.4. If x - u2, then (c,x) and (v) don't extend to disjoint maximum
independent sets in G. So u2 is not adjacent to x.

Thus, there exists y - u2 such that ye (a,b,c,v,x,ul,u 3,u4).
Case 1.1.5. If c - y, then {b,u 2) and (c) don't extend. So c is not adjacent to y.
Case 1.1.6. If x is not adjacent to y, then {c,x,y) and {v) don't extend to disjoint

maximum independent sets in G. So x - y.
Case 1.1.7. Suppose y - u3. If y - a, then x is a cutpoint for G. So y is not

adjacent to a. Thus, there exists z ~ y such that zE (a,b,c,v,x,u 1 u2 ,u3 ,u4 ). But then
{z,u 1,u4) and {u3} don't extend to disjoint maximum independent sets in G (see Figure
16).

x y

C

Figure 16

Hence, y is not adjacent to U3. Since G is planar, {b,y,u 3) is independent; so
{b,y,u3) and {u I) don't extend to disjoint maximum independent sets in G.

Therefore, a is not adjacent to c. Let y - u2 such that ye {a,b,c,v,u 1,u3 ,u4 ).
Case 1.2. Suppose a - y.
Case 1.2.1. Suppose y - ul. If y is not adjacent to c, then (y,c) and (v) don't

extend to disjoint maximum independent sets in G. So y - c and (c,u3) is a cutset for G.
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Thus, y is not adjacent to ul. Let x -1l such that xe (a,v,u 2 ).
Case 1.2.2. Suppose y is not adjacent to x. If y is not adjacent to c, then (x,y,c)

and [v) don't extend to disjoint maximum independent sets in G. So y - c. Then either
[ula) or (u3,c) is a cutset for G (see Figure 17).

Figure 17

Thus y ~ x. Since G3 is 4-regular, y is not adjacent to at least one of u3 or u•. Then
either (y,u3 I and {u1 ) or (Y,u4) and {u1 ) don't extend to disjoint maxi-mum independent
sets in 03.

Hence, a is not adjacent to v-
Case 1.3. Suppose y - c.
Case 1.3.1. Suppose y - u3 (see Figure 18).

U u

Figure 18

Either we have a (3,3,3,4) face configuration at ud, or we have a point inside
triangle yu2u3 or inside triangle y~cu3. From Lemma 12.2, we cannot have a (3,3,3,4) face
configuration at u3. If there is a point inside triangle yu2u3, then y is a outpoint,
contradicting 3-connectedness. If there is a point inside triangle ycu 3 , then (y,c) is acutset, contradicting 3-connectedness.

Case 1.3.2. So y is not adjacent to uy. Let m -113 such that m. {v,c,u21 and let z
C m such that zS {c,y) (see Figure 19). Then 8z,u.,u4) and {u3) don't extend to disjoint

maximum independent sets in G.
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Y

v zb
Figure 19

Hence, y is not adjacent to c. It follows that (a,yc) is independent and so (a,y,c)
and [v) don't extend to disjoint maximum independent sets in G.

Thus, the cyclic face configuration (3,3,4,5) cannot occur.
Case 2. Assume the cyclic face configuration is (3,4,3,5), with faces ulu2v,

u2cu3v, u3u4V and u4baulv. By Lemma 9, a is not adjen , b is not adjacent to g2
u4 is not adjacent to u., c is not adjacent to u1,•.q, b• is not aWjacent to-u, and uli not adjacent to U:.. By ILmnma 1X, _u4 is not adjacent to
a, p is not adjacent to ,and & sj noLt iaj ent on. So there exists X -im such that

ye (a,b,c,v,ul,u2,u3).
Case 2.1. Suppose a - c. Let x - ul'such that xe a,v,u2). If c - x or c - b, then

(ulu4) and (c) don't extend to disjoint maximum independent sets in G. So c is adjacent
to neither x nor b. Thus, (b,c,x) is independent since 0 is planar. It follows that (b,c,x}
and (v) don't extend to disjoint maximum independent sets in G.

Thus, a is not adjacent to c and, by symmetry, b is not adjacent to c.
Case 2.2. Suppose y - ul. Let z - b such that ze (a,y,u 4 ). Then (c,z,ul) is

independent and so (c,z,ul) and (u4) don't extend to disjoint maximum independent sets
in G. So y is not adjacent to ul.

Thus, there exists _x..-ua such that xe {a,b,c,v,y,u2,u3,u4).
Case 2.3. Suppose y - c.
Case 2.3.1. If x - c, then [u1 ,u4) and (c) don't extend to disjoint maximum

independent sets in G. So x is not adjacent to c.
Case 2.3.2. Suppose x - b. If b - U2, then (a,x) is a cutset for G. So b is not

adjacent to u2.
Case 2.3.2.1. Suppose y ~ u2. Let t - c such that tE (y,u2,u3). Then (a,t,u4)

and [u2) don't extend to disjoint maximum independent sets in G. So y is not adjacent to
U2.

Case 2.3.2.2. Suppose x - u2 (see Figure 20).
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Figure 20

(i) Suppose y -u3. If y - x, then [a,b) is a cutse for 0. So y is not adjacent to x.But then {x,y) and (v) don't extend to disjoint maximum independent sets in G.(ii) Thus, y is not adjacent to u3. So there exists z - u3 and w - z such thatze (c,v,y,u4) and we (c,y). Then [w,b,u 2 } and {u3) don't extend to disjoint maximum
independent sets in G.So x is not adjacent to u2. Thus, there exists d - u2 such that
dE (a,b,c,v,x,y,u1 ,u3,u4) (see Figure 21).

C
u2

Y

Figure 21Case 2.3.2.3. If b is not adjacent to d, then i b,d,u3
s and ful) don't extend to

disjoint maximum independent sets in 
G. 

So b - d. Then (a,x) is a cutset for 0.
Thus, x is not adjacent to b. It follows that eb,x,c) is independent and so ub,x,chand (v) don't extend to disjoint maximum independent sets in G.
Hence, v is not adjacent to c and, by symmetry, x is not adjacent to c.Case 2.4$. Suppose a - y. Then (b,x,c) is independent since 0 is planar. Hence,(b,x,c) and (v) don't extend to disjoint maximum indepndent sets in G. Thus, j is no
So (a,c,y} is independent; thus, (a,c,y) and (v) don't extend to disjoint maximumindependent sets in G.
Hence, the cyclic face configuration (3,4,3,5) cannot occur. It follows that G

cannot have a point with face configuration (3,3,4,5). 2
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Lemma 12. Suppose G is 3-connected 4-regular planar and in W2. Then G
cannot have a point with face configuration (3,3,4,n), n Z 6.

]&f. Assume to the contrary that v has face configuration (3,3,4,n), n 2 6. Let
N(v) = (u1,u2,u3,u.1).

Case 1. Assume the cyclic face configuration is (3,4,3,n). Let the faces at v be
uIu2v, u2bu3v, u3u 4 v and u4de...aculv (e = a when n = 6). By Lemma 10,,11 is adjacent
to neither u4 nor d, and c is adjacent to neither lk nor d By Lemma 9, b is not adjacent to
ul, b is not adjacent to an, u2 is not adjacent t o, and u-1inoade .

Suppose b - c. Let y - ul such that yv (c,v,u2).
If b - d, then (u1,u4) and (b) don't extend to disjoint maximum independent sets

in G. So b is not adjacent to d. If b - y, then (b,u4) and (ul) don't extend to disjoint
maximum independent sets in G. So b is not adjacent to y. Since b is not adjacent to y,
then {b,d,y) is independent and so (b,d,y) and [v) don't extend to disjoint maximum
independent sets in G.

Thus, b is not adjacent to c and, by symmetry, b is not adjacent to d. It follows that
{b,c,d) and Mv} don't extend to disjoint maximum independent sets in G.

Hence, the cyclic face configuration (3,4,3,n), n > 6, is not possible.
Case 2. Assume the cyclic face configuration is (3,3,4,n), n 2 6, with faces ulu2v,

u2u3v, u3bu4v and u4de... aculv (e = a when n = 6). By Lemma 8,1. is not adjacent to
Ma. By Lemma 10, _1 is adjacent to neither u• nor d. c is adjacent to neither m4 nor d and

is not adiacent to u4. By Lemma 9, b is not adjacent to u, and x is not adjacent to u-i,

for any x in the n-face at v, xe {v,uI). So there exists s such that

se (a,b,c,d,v,ui,u3,u4} and s is not on the n-face at v.
Case 2.1. Suppose b - d. Let y - u4 such that ye (b,d,v), and w - y such that

wE (b,d). If e is not adjacent to u3, then (e,wu 3) and (u4) don't extend to disjoint
maximum independent sets in G. So e - U3. Then (d,ul) and (u3) don't extend to
disjoint maximum independent sets in G.

Thus, b is not adjacent to d.
Case 2.2. Suppose b - c.
Case 2.2.1. If b - ui, then (a,v) and (b) don't extend to disjoint maximum

independent sets in G. So b is not adjacent to ul.
Case 2.2.2. If c - u3, then {uIu2) is a cutset for G. So c is not adjacent to u3.

Thus, there exist points x and t such that x - U3, t - ul and {x,t) })

(b,c,v,ulu2,u3) = 0. If x = t, then (Ul,U4) and (u3) don't extend to disjoint maximum
independent sets in G. So x * t.

Case 2.2.3. Suppose t - b. Then (ulx,d) is independent since x * t and G is
planar. It follows that (ulx,d) and (b) don't extend to disjoint maximum independent
sets in G. So t is not adjacent to b.

-Case 2.2.4. Suppose t - u2. Then (t,b) and {v) don't extend to disjoint
maximum independent sets in G. So t is not adjacent to u2.

Since G is 4-regular, there exists z - t such that ze (c,x) (see Figure 22). Thus z is
not adjacent to u3, and so (a,z,u3} is independent. It follows that (a,z,u3) and (Ul) donat
extend to disjoint maximum independent sets in G.
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"T'herefore, b is not adjacent to c.Case 2.3. Suppose s - c.
Case 2.3.1. If s - b, then either {c,u 1 } or {b,u 3) must be; a cutet of G. So s is

not adjacent to b.
Case 2.3.2. If s - u1, then (s,b) and (v) don't extend to disjoint maximum

independent sets in G. So s is not adjacent to u1 .
Let w ~ u1 such that wE (v,c,u2).
Case 2.3.3. If w is not adjacent to s, then {w,s,b} and {v) don't extend to disjoint

maximum independent sets in G. So w - s.
Case 2.3.4. If s - u3, then (b,u1 } and {s} don't extend to disjoint maximum

independent sets in G. So s is not adjacent to u3; hence, (s,u3 } and (u1 )} don't extend to
disjoint maximum independent sets in G (see Figure 23).CU

a2

u 3u

Figure 22

Thus, s is not adjacent to c.
Case 2.4. Suppose s - b.
Case 2.4.1. Suppose I u3. Ifs is not adjacent to d, then es,c,d) and o vG don't

extend to disjoint maximum independent sets in G. So s - d. Then there e~xist t - 114 such
that tE {v,b,d,s}, and z ~ t such that zE (b,d}. It follows that (e,z, u3} is independent andso Ce,z,u3  .and (u4)} don't extend to disjoint maximum independent sets in G.

Hence, s is not adjacent to u3. So there exists w - u3 such that wE {s,b,v,u2 }.
Case 2.4.2. Suppose s 3 u4. If s is not adjacent to w, then (s,w,c} and (v} don't

extend to disjoint maximum independent sets in 0. So s - w. Then sd,u 3 } and {s) don't
extend to disjoint maximum independent sets in g.

So s is not adjacent to 114.
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Case 2.4.3. Suppose s - w. Then {s,u4) and (u3) don't extend to disjoint
maximum independent sets in G. So s is not adjacent to w.

Let W = N(w) -u 3.
Case 2.4.4. Suppose b - w. Suppose s - x for some xe W-b. Then (v,x) and

(b) don't extend to disjoint maximum independent sets in G. Let xe W-b. Then x is not
adjacent to s and so (s,x,u4 ) and Wu3) don't extend to disjoint maximum independent sets
inG.

So b is not adjacent to w. Since G is 4--regular, thee exists yeW such that y is not
adjacent to s. But then (y,s,u4) and (u3) don't extend to disjoint maximum independent
sets in G (see Figure 24).

S

- 2

a

d ,Y

Figure 24

Hence, s is not adjacent to b. It follows that (s,b,c} is independent and so (s,b,c)
and [v) don't extend to disjoint maximum independent sets in G.

So the cyclic face configuration (3,3,4,n), n > 6, cannot occur. Thus, the face
configuration (3,3,4,n), n > 6, cannot occur. 0

Lemma 12.8. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,5,5).

Proof. Assume to the contrary that v has face configuration (3,3,5,5), with N(v) =
(u1,u2,u3,u 4 ).

Case 1. Assume the cyclic face configuration at v is (3,5,3,5), with faces utu2v,
u2cdu3v, u3u4v and u4baulv. By Lemma 9, a is not adjacent to u), a is not adjacent to u-1,
b is not adjacent to ui, b is not adjacent to ui, c is not adjacent to ut, c is not adjacent to
u14, d is not adjacent to u1, d is not adiacent to u4, p-L is not adiacent tgob, and u? is not
adjacent to u,. By Lemma 10, a is not adjacent to ua, b is not adjacent to ul, c is not
adjacent to u, d is not adjacent ul, u1 is not adjacent to u4, and u2 is not adjacent to u.

Hence, there exists _.z..l such that xE (a,b,c,d,v,U2,u3,u4}.
Case 1.1. Suppose a - c.
Case 1.1.1. Suppose x - u2. If b is not adjacent to d, then {x,b,d) and (v) don't

extend to disjoint maximum independent sets in G. So b - d.
Let s - u3 and t - u4 such that se (d,v,u 4,b) and ti (b,v,u3,d).
Case 1.1.1.1. If s = t, then (s,x) and (v) don't extend to disjoint maximum

independent sets in G. So s • t.
Case 1.1.1.2. If s is not adjacent to t, then (s,t,x) and (v) don't extend to disjoint

maximum independent sets in G. So s - t. But then (a,s,u2) and (u4) don't extend to
disjoint maximum independent sets in G.
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Case 1.1.2. Thus x is not adjacent to u2. Let y - u2 such that ye (v,c,u1 ). If x is
not adjacent to y, then we can proceed as in Case 1.1.1 to obtain a contradiction. Sox -y
(see Figure 25).

V

b d
U4  U3

Figure 25

Case 1.1.2.1. Suppose x - a. If x - c, then y is a cutpoint for G. So x is not
adjacent to c. Thus, there exists z - x such that ze (a,y,ul,c). Then (z,1u2,u4) is
independent and so (z,u2,u4) and (a) don't extend to disjoint maximum independent sets
in G.

Case 1.1.2.2. So x is not adjacent to a. Since Q is 4-regular, a is not adjacent to at
least one of U3 or U4. Then either (a,x,u 4 ) and (u2) or (a,x,u 3) and [u2) don't extend to
disjoint maximum independent sets in G.

Thus, a is not adiacent to c. By symmetry, b is not adjacent to d,
Case 1.2. Suppose b-c.
Case 1.2.1. If b - x, then (a,x) is a cutsetforG. So bis not adjacent to x.
Case 1.2.2. If x - u2, then {x,b,d) and (v) don't extend to disjoint maximum

independent sets in G. So x is not adjacent to u2.

Let y - U2 such that ye (v,c,u I).
Case 1.2.3. If y - x, then (x,d,u4 ) and (u2) don't extend to disjoint maximum

independent sets in G. So y is not adjacent to x.
Case 1.2.4. If y is not adjacent to b, then Ix,y,b,d) is independent and so

(x,y,b,d) and (v) don't extend to disjoint maximum independent sets in G. So y - b.
Then (b,x,u 3 ) and (u2) don't extend to disjoint maximum independent sets in G.

Hence, b is not adiacent to c and, by symmetry, a is not adjacent to d.
If x is adjacent to any member of (b,c,u3 ), then (b,c,u3) and (ul) don't extend to

disjoint maximum independent sets in G. So x is adjacent to no member of fb.c.u1.
Thus,-there exists z z-u such that ze (a,bc,d,vx,ul,u 2,u4 ). By symmetry with x, it
follows that z is adjacent to neither b nor c.

If z is not adjacent to x, then (z,xb,c) is independent and so (z,x,b,c) and (v)
don't extend to disjoint maximum independent sets in G. So z-x.

Suppose x - u2. If x - d, then {c,d) is a cutset for G. So x is not adjacent to d.
Then (x,b,d) and (v) don't extend to disjoint maximum independent sets in G. So ais
not adiacent to u2 and, by symmetry, z is not adjacent to 4.

Suppose x - U4. There exists t - a such that tf {b,x,ul) and {t,c,u4) is
independent. Then (t,c,u4 ) and (ul) don't extend to disjoint maximum independent sets
in G. So x is not adjacent to u4 and, by symmetry, z is not adJacen to u-2.

Hence, there exist points p and q such that 1L..-u-, q - 14 and [p,q) n

Ia,b,c,dv,x,z,ul,u 2 ,u3,u4) = 0. Since z - x from above and G is planar, then p g a and
p is not adjacent to ". See Figure 26.
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If p - d, then d,u4,a) and (u2) don't extend to disjoint maximum independent sets
in G. So p is not adjacent to d and, by symmetry, q is not adjacent to a Thus, fadptq)
is independent; it follows that (a,d,p,q) and (v) don't extend to disjoint maximum
independent sets in G.

Hence, the cyclic face configuration (3,5,3,5) cannot occur.
Case 2. Assume the cyclic face configuration at v is (3,3,5,5), with faces uIu2v,

u2u3v, u3dcu4v and u4baulv. By Lemma 8, L1 is not adjacent to. By Lemma 9,
not adjacent to U , a is not adjacent to u2, bi s not adjacent to W ,inQ t dja eni to u, and

d is not adiacentip u,. By Lemma 10, 11 nt , is not adjacent to 1M, dis
notadjacentonu _i, a is not adiacent to u4, b is not adjacent to u1, and c is not adjacent to t.

Thus, there exists w - u_4 such that we (a,b,c,d,v,ul,u 2,u4 ).
Case 2.1. If d - ul, then (b,u 3) and Jut) don't extend to disjoint maximum

independent sets in G. So d is not adjacent to ill and, by symmetry, a is not adjacent to u-.
Case 2.2. Suppose w - a.
Case 2.2.1. If a - c, then (a,U3) and (u4) don't extend to disjoint maximum

independent sets in G. So a is not adjacent to c.
Case 2.2.2. Suppose c - u,. Since a is not adjacent to c, there exists s - a such

that se (b,w,ul,c). But then [s,u3,u4) is independent and so {s,u3,u4) and (ul) don't
extend to disjoint maximum independent sets in G. So c is not adjacent to ul.

Case 2.2.3 If w - u3, then [a,d,u2 ) and (u4) don't extend to disjoint maximum
independent sets in G. So w is not adjacent to u3.

Let t - u3 such that tg [v,d,u2 ).
-Case 2.2.4. If c - t, then (c,ul) and (u3] don't extend to disjoint maximum

independent sets in G. So c is not adjacent to t.

Thus, there exists z - c such that ze (d,u4,a,ul,u 2 ,w) and z is not adjacent to U3
(since G is 4-regular). See Figure 27.
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Case 2.2.5. If z - a, then (b,w} is a cutset for G. So z is not adjacent to a. Then
{a,z,u3) is independent and so (a,zu3) and (u4) don't extend to disjoint maximum
independent sets in G.

Hence, w is not adjacent to a. By symmetry, w is not adjacent to d.
Case 2.3. Suppose a - d. Then there exists y - u2 such that

ye { a,b,c,d,v,w,ul,u3,u4}.

Case 2.3.1. Suppose a - y. Then (y,ulI is a cutset for G. So a is not adjacent to
y and, by symmetry, d is not adjacent to y.

Case 2.3.2. If y - u3, then (a,w,y) is independent and so (a,w,y) and (v) don't
extend to disjoint maximum independent sets in G. So y is not adjacent to U3 and, by
symmetry, y is not adjacent to ul.

Thus, there exists s - U3 such that so Ia,b,c,d,w,v,y,ulu 2 ,u4.
Case 2.3.3. If y - s, then fy,c,ul) and (u3) don't extend to disjoint maximum

independent sets in G. So y is not adjacent to s.
Case 2.3.4. If a is not adjacent to s, then (a,y,w,s) is independent and so

(a,y,w,s) and (v} don't extend to disjoint maximum independent sets in G. So a - s.
Case 2.3.5. If s - ul, then (b,u 3 } and Cul} don't extend to disjoint maximum

independent sets in G. So s is not adjacent to ul.
So there exists x - ul such that xe fa,v,u2,y,S) (see Figure 28).

u d

w d

Figure 28
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Case 2.3.6. If y - x, then (y,u 3,b) and (ul) don't extend to disjoint maximum
independent sets in G. So y is not adjacent to x; it follows that (x,yw,d) is independent.
Thus, (x,y,w,d) and (v) don't extend to disjoint maximum independent sets in G.

Hence, a is not adjacent to d.
Case 2.4. If w - U2, then (a,d,w) and (v) don't extend to disjoint maximum

independent sets in G. So w is not adjacent to u.
Thus, there exists XZUZ such that ye fa,b,c,dv,w,u1,u3,u4}.
Case 2.5. If a - y, then {a,d,u 4) and {u2) don't extend to disjoint maximum

independent sets in G. So a is not adjacent to y. By symmetry, d is not adjacent to X.
Case 2.6. Suppose y - w.
Case 2.6.1. Suppose y - ul. If y - b, then (a,u 3,u4 ) and (y) don't extend to

disjoint maximum independent sets in G. So y is not adjacent to b. Then Ib,d,y) and (v)
don't extend to disjoint maximum independent sets in G.

Thus, y is not adjacent to ul and, by symmetry, y is not adjacent to u3.
Case 2.6.2. If y - c, then (a,y,u 3 ) and (u4) don't extend to disjoint maximum

independent sets in G. So y is not adjacent to c and, by symmetry, y is not adjacent to b.
Case 2.6.3. Consequently, y has two neighbors zi and z2 such that (z1,z2}) r

{a,b,c,d,w,v,ul,u2,u 3 ,u4) = 0. If a - zi and a - z2, then (ul,Zi) is a cutset for G, for
some i. If d - zi and d - z2, then IU3,ZA) is a cutset for G, for some i. If zi is adjacent to
neither a nor d, for some i, then (zi,a,d,u 4) and (u2) don't extend to disjoint maximum
independent sets in G. Thus, without loss of generality, we can assume z, - a and z2 - d
(see Figure 29).

U U 2
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Figure 29

If lf ~I u1, then (b,y,u 3) and {ul} don't extend to disjoint maximum independent
sets in G3. So Zl is not adjacent to Ul.

Thus, there exist x - ul and t - x such that x• {a,v,y,u2,z 1 } and t• {a,z1}. But
then (t,b,u3) is independent and so (t,b,u3) and (us) don't extend to disjoint maximum
independent sets in G3.

Hence, y is not adjacent to w; thus, the set (a,y,d,w) is independent. It follows
that (a,y,d,w} and (v) don't extend to disjoint maximum independent sets in G3.

So the cyclic face configuration (3,3,5,5) cannot occur. Therefore, the faceconfiguration (3,3,5,5) cannot ccur.29

Lemma 12.9. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,3,5,n), for n = 6 or 7.
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roof. Assume to the contrary that v has face configuration (3,3,5,n), n = 6 or 7.
Let N(v) = {ul,u2,U3,u 4 }.

Case 1. Suppose the cyclic face configuration is (3,5,3,n), with faces u1u 2v,
u2abu3v, u3u4v and u4defculv (e = f for the n = 6 case). By Lemma 9, a is not adiacent to
u, b is not adjacent to u1, a is not adjacent to u4, b is not adjacent to -4, c is not adjacent to
u2, d is not adjacent to u2, e is not adjacent to 6i, f isnotajacnt tojz-, c is not adjacent to
Z, d is not adjacent to u3, e is not adjacent to u, f isnot djacnt tj:, u2 is not adjacent
I. and u is not adjacent to u1. By Lemma 10, Uj is not adjacent to uZ, a
adjacent to um, c is not adjacent to d, a is not adjacent to u-i, bis not adjacenittou,
adjacent to U and d is not adjacent to u,.

Thus, there exists x -y2 such that xo fa,b,c,d,e,fv,u1 ,u3,U4).
Case 1.1. Suppose a - c. Then there exists z - ul such that

ze { a,b,c,d,e,f,v,u 2,u3,u4}.
Case 1.1.1. If a - z, then (a,u 3 1 and (ul) don't extend to disjoint maximum

independent sets in G. So a is not adjacent to z.
Case 1.1.2. If z - c and z - u2, then (z,a) is a cutset for G. So z is not adjacent to

at least one of c and u2.
Since G is 4-regular, there exist points s and t adjacent to z such that (s,t) r)

{a,c,u 2} = 0. Now either a is not adjacent to t or a is not adjacent to s. Say a is not
adjacent to t. Then (a,t,u3} is independent and so (a,tu 3) and (ul) don't extend to
disjoint maximum independent sets in G.

Thus, a is not adjacent to c. By symmetry, b is not adjacent to d.
Case 1.2. Suppose x - u3. Let t - b such that tg (a,x,u 3). Then (t,d,u 2) is

independent since G is planar. So (t,d,u 2) and (u3} don't extend to disjoint maximum
independent sets in G.

Thus, x is not adiacent to u.. Let y.-z.-I such that ye (a,b,c,d,e,fv,x,u1 ,u2,u4)
(see Figure 30).

x
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Case 1.3. Suppose x - c. If b is not adjacent to c, then {b,c,u4 ) and {u2) don't
extend to disjoint maximum independent sets in G; so b - c. Let w - f such that we {c,vy.
Then (U2,U3,w} and {c} don't extend to disjoint maximum independent sets in G.

Hence, x is not adjacent to c. By symmetry, y is not adjacent to d.
Case 1.4. Suppose b - x. If b is not adjacent to c, then (b,c,u 4 ) and (u2) don't

extend to disjoint maximum independent sets in G. So b - c and (a,x) is a cutset for G.
Thus, b is not adjacent to x and, by symmetry, a is not adjacent to y.
Case 1.5. Suppose d ~ x. If a - d, then (c,d,u3) and (u2) don't extend to disjoint

maximum independent sets in G. So a is not adjacent to d. Then {a,c,d,y) is independent
and so {a,c,d,y) and {v) don't extend to disjoint maximum independent sets in G.
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Thus, d is not adjacent to x and, by symmetry, c is not adjacent to y.
If x - y, then (a,c,d,y} is independent. So (a,c,d,y) and {v) don't extend to

disjoint maximum independent sets in G. Thus, x is not adjacent to y and it follows that
{c,dx,y) is independent. Hence, (c,d,x,y} and (v) don't extend to disjoint maximum
independent sets in G.

Thus, the cyclic face configuration (3,5,3,n), n = 6 or 7, is not possible.
Case 2. Suppose the cyclic face configuration is (3,3,5,n), with faces ulu2v,

u2u3v, u3cdu4v and u4befauiv (e = f when n = 6). By Lemma 8, u1inoLt adiaent to 93.
By Lemma 9, a is not adjacent to u2 , b is not adjacent to u2 , c is not adjacent to u2 , d is not
adjacent to u2, e is not adiacent to u, f is not adjacent to u,), and u,7 is not adjacent to t
By Lemma 10, a is not adjacent to ul, c is not adjacent to 114,u11 is not adjacent to u4, I

not adJacent to u4, a is not adjacent to b, b is not adJacent to u1, and d is not adjacent to U

Thus, there exists y - u? such that ye (a,b,c,d,e,f,v,U1,u3,u4].
Case 2.1. If a - u3 , then (d,ul) is independent and so {d,ul) and (u3) don't

extend to disjoint maximum independent sets in G. So a is not adjacent to u3 and, by
symmetry, c is not adiacent to u1.

Case 2.2. Suppose b - c. Since c is not adjacent to u4, then there exists w - u 4

such that we {b,c,d,v}. If w - c, then (w,d) is a cutset for G. So w is not adjacent to c,

and there exists s - w such that se (b,c,d,u 4 ).
Case 2.2.1. If c is not adjacent to s, ther Ic,s,u 2) and (u4) don't extend to

disjoint maximum independent sets in G. So c - s (see Figure 31).
u1 U2
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Case 2.2.2. If w - b, then let t - e such that t * b. Then (sv,t) and (b) don't
extend to disjoint maximum independent sets in G. So w is not adjacent to b.

- Thus, there exists z - w such that ze {b,c,d,s,u4 ). Then IcZ,u2) is independent
and so (cZ,u2) and (u4) don't extend to disjoint maximum independent sets in G.

Therefore, b is not adjacent to c.
Case 2.3. Suppose a - c.
Case 2.3.1. Suppose y is not adjacent to ul. Let x - ul such that

xv (a,b,c,d,e,f,v,y,u2,u3,u4). If y - c, then (cu4) and (u2) don't extend to disjoint
maximum independent sets in G. So y is not adjacent to c. If y - x, then (y,f,u4) and
(u J} don't extend to disjoint maximum independent sets in G. So y is not adjacent to x. If
x - c, then (y,c,u4) and (ul) don't extend to disjoint maximum independent sets in G. So
x is not adjacent to c.

Thus, (x,y,b,c) is independent and so (x,y,bc) and Iv) don't extend to disjoint
maximum independent sets in G. So y - ul.
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Case 2.3.2. If y - U3, then (y,d) and (v) don't extend to disjoint maximum
independent sets in G. So y is not adjacent to u3.

Case 2.3.3. If y - c, then {y,u3) is a cutset for G. So y is not adjacent to c.
Thus, (y,b,c) is independent and so {y,b,c) and [v) don't extend to disjoint

maximum independent sets in G.
Hence, a is not adJacent to c.

Case 2.4. Suppose b - U3. Then there exists t - c such that tw {d,u 3}, t is not

adjacent to u4, and (t,u1 ,u4} is independent. Thus, (t{,U,U) and (u3) don't extend to
disjoint maximum independent sets in G.

So b is not adjacent to ua.
Case 2.5. If a - y or c - y, then (a,c,u 4 ) and (u2) don't extend to disjoint

maximum independent sets in G. So y is-adjacent to neither a nor c.
Case 2.6. Suppose b - y. If y - u4 , then (a,c,y) and (v) don't extend to disjoint

maximum independent sets in G. So y is not adjacent to u.4 and there exists w - u4 such

that we {b,c,d,v,y,u 3 ) .
Case 2.6.1. Suppose y - w. If y - ul, then {a,u3,N4 ) and (y) don't extend to

disjoint maximum independent sets in G. So y is not adjacent to ul. But then (c,y,ul)
and (u4) don't extend to disjoint maximum independent sets in G.

Case 2.6.2. So y is not adjacent to w (see Figure 32). If w - c, then fc,e,u2) and
(u4• don't extend to disjoint maximum independent sets in G. So w is not adjacent to c.
Then a,c,w,y} and (v) don't extend to disjoint maximum independent sets in G.

Y

u2

3

Figure 32

Hence, b is not adjacent to y; it follows that (a,b,c,y) is independent and so
(a,b,c,y) and (v} don't extend to disjoint maximum independent sets in G.

Thus, the cyclic face configuration (3,3,5,n), n = 6 or 7, cannot occur. Therefore,
the face configuration (3,3,5,n), n = 6 or 7, cannot occur. 0

Lemma12.10. Suppose G is 3-connected 4-regular planar and in W2. If v is apointin G,
then v cannot have face configuration (3,4,4,4).

Proof. Assume to the contrary that v has face configuration (3,4,4,4). Let N(v) =

IUl,U2,U3,U4). Assume the faces at v are ulu2v, u2bu3v, u3du4v and u4aulv. By Lemma
9, a is not adjacent u,) and bis not adiacent t0 Uj.

If a is not adjacent to b, then {a,b) and (v) don't extend to disjoint maximum
independent sets in G. So a-b.

Let •_.-JU. xe {a,v,u2), and y..X_-u, ye (b,v,ul). If x = y, then (x,d) and (v)

don't extend to disjoint maximum independent sets in G. So x * y. If x is not adjacent to
y, then (x,y,d) and (v) don't extend to disjoint maximum independent sets in G. So x -
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y. Since G is planar, (x,u3) is independent. Thus, [X,U3) and (u2) don't extend to
disjoint maximum independent sets in G.

Therefore, the face configuration (3,4,4,4) cannot occur. 0

Lemma 1211. Suppose G is 3-connected 4-regular planar and in W2. If v is a point in G,
then v cannot have face configuration (3,4,4,5).

Rof. Assume to the contrary that v has face configuration (3,4,4,5). Let N(v) =
ul,u2,u3,u4).

Case 1. Suppose the cyclic order of the faces is (3,4,5,4). Let the faces be ulu2v,
u2bu3v, u3cdu4v and u4aulv.

By Lemma 9, a is not adjacent to u2 and b is not adjacent to m1. By Lemma 10, m
is not adjacent to u3,, d is not adjacent to u4, and

If a is not adjacent to b, then (a,b) and [v) don't extend to disjoint maximum
independent sets in G. So 1=..-h. Thus, there exist x-ui and y such that (x,y) ni
{a,b,c,d,v,u 1 ,u2,u3,u4) = 0.

If a - u3, then {y,a) is independent and so (y,a) and (v) don't extend to disjoint
maximum independent sets in G. So a is not adjacent to u3. Thus, there exists w -

such that we {a,b,c,d,v,x,y,ui,u2,u 4 ).
If w - d, then (d,u2) and (u3) don't extend to disjoint maximum independent sets

in G. So w is not adjacent to d. If x = y, then (w,x,d)and (v) don't extend to disjoint
maximum independent sets in G. So y. If x is not adjacent to y, then (d,x,y,w) is
independent since G is planar. Then {d,x,y,w) and (v) don't extend to disjoint maximum
independent sets in G. So x - y. But then (x,u3) and (u2) don't extend to disjoint
maximum independent sets in G (see Figure 33).

a b
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Thus, the cyclic face order (3,4,5,4) cannot occur.
Case 2. Suppose the cyclic order of the faces is (3,4,4,5). Let the faces be ulu2v,

u2bcu3v, u3du4v and u4auiv. By Lemma 9, Uis not adjacent to u- and a is not adjacent to
p2. By Lemma 10, b is not adjacent to u3.

Suppose a - d. Then there exist points z and w such that w - u4, z - w,
we (a,d,v} and zo (a,d). Since ul is not adjacent to u3, then (z,u1,u3) is independent.
Thus, (z,u1,u3) and Wu4) don't extend to disjoint maximum independent sets in G.
Hence, a is not adjacent to d.

Suppose a - b. Let x - u2 such that xe (b,v,ui). If x - a, then (d,u 2) and (a]
don't extend to disjoint maximum independent sets in G. So x is not adjacent to a. But
then {a,d,x) is independent and so (a,d,x) and (v) don't extend to disjoint maximum
independent sets in G. Thus, a is not adjacent to b.
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Suppose b - d. Let z - U3 such that z (c~d,v). From above, b * z. If b - z, then
{b,u 4) and (u3} don't extend to disjoint maximum independent sets in G. So b is not
adjacent to z. Thus (a,b,z} is independent and so (a,b,z) and(v) don't extend to disjoint
maximum independent sets in G.

Hence, b is not adiacent to d. So (a,b,d) is independent. Itfollows that (abd)
and (v) don't extend to disjoint maximum independent sets in G.

Thus, the cyclic face order (3,4,4,5) cannot occur. Therefore, the face
configuration (3,4,4,5) cannot occur. 0

Now we are ready to state the main result of this paper in Theorem 13. In
particular, there is only one 3-connected 4-regular planar W2 graph.

Theorem 13. Suppose G is 3-connected 4-regular planar and in W2 . Then G is
isomorphic to the graph in Figure 4.

Proof. Since G is 4-regular, then the Euler contribution for any point u in G is
given by 0(u) = 1 - deg(u)/2 + I(1/xJ) = -1 + I(1IxO, where the sum is taken over all faces
Fi incident with u and xi is the size of face Fi. From the discussion earlier, we know that
G must have a point with positive Euler contribution. Let v be a point in G with ý(v) > 0.

Then 1(1/xi) > 1, where the sum is taken over the four faces FI, F2, F3, F4 incident with v
and xi is the size of Fi, i = 1, 2, 3, or 4. The only solutions to the Diophantine inequality
I(l/x' > 1 are: (a) (3,3,3,n), for n > 3;

(b) (3,3,4,n), for 4 < n < 11;
(c) (3,3,5,n), for 5 • n < 7;

and (d) (3,4,4,n), for 4•< n < 5.
Thus, v must have one of the face configurations given in (a)-(d). By Lemmas 12.1 -
12.11, it follows that G must be the graph given in Figure 4. 0

Open Questons

Some questions related to the content of this paper remain open. They include the
following:

(1) Are there any exactly 2-connected planar 4-regular I-well-covered graphs?
(2) What are the planar 5-regular 1-well-covered graphs? The author conjectures

that there are no such graphs (although there are known nonplanar 5-regular 1-well-covered
graphs).

(3) Can the 4-regular 1-well-covered graphs be characterized? (In a computer
search on all regular graphs with at most 13 points, Royle [13] found that there are only
nine 4-regular 1-well-covered graphs.)
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